o
    ,h5                     @   s   d dl Z d dlmZ d dlmZmZmZ d dlZd dlmZ ddl	m
Z
mZ ejjjZG dd dejjZG d	d
 d
ejjZG dd deZG dd deZG dd dejjZG dd dejjZG dd dejjZdS )    N)Sequence)CallableOptionalUnion)Tensor   )_log_api_usage_once_make_ntuplec                       s   e Zd ZdZ	ddedef fddZdeded	ed
e	de
e de
e de
e f fddZdedefddZdefddZ  ZS )FrozenBatchNorm2da!  
    BatchNorm2d where the batch statistics and the affine parameters are fixed

    Args:
        num_features (int): Number of features ``C`` from an expected input of size ``(N, C, H, W)``
        eps (float): a value added to the denominator for numerical stability. Default: 1e-5
    h㈵>num_featuresepsc                    sd   t    t|  || _| dt| | dt| | dt| | dt| d S )Nweightbiasrunning_meanrunning_var)super__init__r   r   register_buffertorchoneszeros)selfr   r   	__class__ O/var/www/html/scripts/venv/lib/python3.10/site-packages/torchvision/ops/misc.pyr      s   
zFrozenBatchNorm2d.__init__
state_dictprefixlocal_metadatastrictmissing_keysunexpected_keys
error_msgsc           	   	      s2   |d }||v r||= t  ||||||| d S )Nnum_batches_tracked)r   _load_from_state_dict)	r   r   r   r   r    r!   r"   r#   num_batches_tracked_keyr   r   r   r%   $   s   
z'FrozenBatchNorm2d._load_from_state_dictxreturnc                 C   sr   | j dddd}| jdddd}| jdddd}| jdddd}||| j   }|||  }|| | S )N   )r   reshaper   r   r   r   rsqrt)r   r'   wbrvrmscaler   r   r   r   forward6   s   zFrozenBatchNorm2d.forwardc                 C   s$   | j j d| jjd  d| j dS )N(r   z, eps=))r   __name__r   shaper   )r   r   r   r   __repr__A   s   $zFrozenBatchNorm2d.__repr__)r   )r5   
__module____qualname____doc__intfloatr   dictstrboollistr%   r   r2   r7   __classcell__r   r   r   r   r
      s2    r
   c                       s   e Zd Zddddejjejjdddejjf
dedede	ee
edf f d	e	ee
edf f d
ee	ee
edf ef  dedeedejjf  deedejjf  de	ee
edf f dee dee dedejjf ddf fddZ  ZS )ConvNormActivation   r)   NTin_channelsout_channelskernel_size.stridepaddinggroups
norm_layeractivation_layerdilationinplacer   
conv_layerr(   c              
      s  |d u r<t trt  trd d   }n%t tr tnt }t|t | t fddt|D }|d u rD|d u }||||| ||dg}|d ur\||| |d urt|
d u rfi nd|
i}||di | t j	|  t
|  || _| jtkrtd d S d S )	Nr)   r   c                 3   s(    | ]}| d  d  |  V  qdS )r)   r   Nr   ).0irL   rF   r   r   	<genexpr>]   s   & z.ConvNormActivation.__init__.<locals>.<genexpr>)rL   rI   r   rM   zhDon't use ConvNormActivation directly, please use Conv2dNormActivation and Conv3dNormActivation instead.r   )
isinstancer;   r   lenr	   tuplerangeappendr   r   r   rE   r   rB   warningswarn)r   rD   rE   rF   rG   rH   rI   rJ   rK   rL   rM   r   rN   	_conv_dimlayersparamsr   rQ   r   r   F   sB   


zConvNormActivation.__init__)r5   r8   r9   r   nnBatchNorm2dReLUConv2dr;   r   rU   r   r>   r   Moduler?   r   rA   r   r   r   r   rB   E   sL    	
rB   c                       s   e Zd ZdZddddejjejjdddf	dedede	ee
eef f d	e	ee
eef f d
ee	ee
eef ef  dedeedejjf  deedejjf  de	ee
eef f dee dee ddf fddZ  ZS )Conv2dNormActivationa  
    Configurable block used for Convolution2d-Normalization-Activation blocks.

    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
        kernel_size: (int, optional): Size of the convolving kernel. Default: 3
        stride (int, optional): Stride of the convolution. Default: 1
        padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm2d``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
        dilation (int): Spacing between kernel elements. Default: 1
        inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
        bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.

    rC   r)   NTrD   rE   rF   rG   rH   rI   rJ   .rK   rL   rM   r   r(   c                    *   t  |||||||||	|
|tjj d S N)r   r   r   r]   r`   r   rD   rE   rF   rG   rH   rI   rJ   rK   rL   rM   r   r   r   r   r         zConv2dNormActivation.__init__)r5   r8   r9   r:   r   r]   r^   r_   r;   r   rU   r   r>   r   ra   r?   r   rA   r   r   r   r   rb   ~   sH    	
rb   c                       s   e Zd ZdZddddejjejjdddf	dedede	ee
eeef f d	e	ee
eeef f d
ee	ee
eeef ef  dedeedejjf  deedejjf  de	ee
eeef f dee dee ddf fddZ  ZS )Conv3dNormActivationa  
    Configurable block used for Convolution3d-Normalization-Activation blocks.

    Args:
        in_channels (int): Number of channels in the input video.
        out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
        kernel_size: (int, optional): Size of the convolving kernel. Default: 3
        stride (int, optional): Stride of the convolution. Default: 1
        padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm3d``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
        dilation (int): Spacing between kernel elements. Default: 1
        inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
        bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
    rC   r)   NTrD   rE   rF   rG   rH   rI   rJ   .rK   rL   rM   r   r(   c                    rc   rd   )r   r   r   r]   Conv3dre   r   r   r   r      rf   zConv3dNormActivation.__init__)r5   r8   r9   r:   r   r]   BatchNorm3dr_   r;   r   rU   r   r>   r   ra   r?   r   rA   r   r   r   r   rg      sH    	
rg   c                       s   e Zd ZdZejjejjfdedede	dejj
f de	dejj
f ddf
 fd	d
ZdedefddZdedefddZ  ZS )SqueezeExcitationaE  
    This block implements the Squeeze-and-Excitation block from https://arxiv.org/abs/1709.01507 (see Fig. 1).
    Parameters ``activation``, and ``scale_activation`` correspond to ``delta`` and ``sigma`` in eq. 3.

    Args:
        input_channels (int): Number of channels in the input image
        squeeze_channels (int): Number of squeeze channels
        activation (Callable[..., torch.nn.Module], optional): ``delta`` activation. Default: ``torch.nn.ReLU``
        scale_activation (Callable[..., torch.nn.Module]): ``sigma`` activation. Default: ``torch.nn.Sigmoid``
    input_channelssqueeze_channels
activation.scale_activationr(   Nc                    sX   t    t|  tjd| _tj||d| _tj||d| _	| | _
| | _d S )Nr)   )r   r   r   r   r]   AdaptiveAvgPool2davgpoolr`   fc1fc2rm   rn   )r   rk   rl   rm   rn   r   r   r   r      s   
zSqueezeExcitation.__init__inputc                 C   s2   |  |}| |}| |}| |}| |S rd   )rp   rq   rm   rr   rn   r   rs   r1   r   r   r   _scale   s
   




zSqueezeExcitation._scalec                 C   s   |  |}|| S rd   )ru   rt   r   r   r   r2     s   
zSqueezeExcitation.forward)r5   r8   r9   r:   r   r]   r_   Sigmoidr;   r   ra   r   r   ru   r2   rA   r   r   r   r   rj      s"    rj   c                       sv   e Zd ZdZdejjdddfdedee de	e
dejjf  d	e	e
dejjf  d
e	e dedef fddZ  ZS )MLPa  This block implements the multi-layer perceptron (MLP) module.

    Args:
        in_channels (int): Number of channels of the input
        hidden_channels (List[int]): List of the hidden channel dimensions
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the linear layer. If ``None`` this layer won't be used. Default: ``None``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the linear layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
        inplace (bool, optional): Parameter for the activation layer, which can optionally do the operation in-place.
            Default is ``None``, which uses the respective default values of the ``activation_layer`` and Dropout layer.
        bias (bool): Whether to use bias in the linear layer. Default ``True``
        dropout (float): The probability for the dropout layer. Default: 0.0
    NTg        rD   hidden_channelsrJ   .rK   rM   r   dropoutc                    s   |d u ri nd|i}g }	|}
|d d D ]2}|	 tjj|
||d |d ur-|	 || |	 |di | |	 tjj|fi | |}
q|	 tjj|
|d |d |	 tjj|fi | t j|	  t|  d S )NrM   r*   )r   r   )rW   r   r]   LinearDropoutr   r   r   )r   rD   rx   rJ   rK   rM   r   ry   r\   r[   in_dim
hidden_dimr   r   r   r     s   zMLP.__init__)r5   r8   r9   r:   r   r]   r_   r;   r@   r   r   ra   r?   r<   r   rA   r   r   r   r   rw     s,    rw   c                       s<   e Zd ZdZdee f fddZdedefddZ  Z	S )	PermutezThis module returns a view of the tensor input with its dimensions permuted.

    Args:
        dims (List[int]): The desired ordering of dimensions
    dimsc                    s   t    || _d S rd   )r   r   r   )r   r   r   r   r   r   <  s   

zPermute.__init__r'   r(   c                 C   s   t || jS rd   )r   permuter   )r   r'   r   r   r   r2   @  s   zPermute.forward)
r5   r8   r9   r:   r@   r;   r   r   r2   rA   r   r   r   r   r~   5  s    r~   )rX   collections.abcr   typingr   r   r   r   r   utilsr   r	   r]   
functionalinterpolatera   r
   
SequentialrB   rb   rg   rj   rw   r~   r   r   r   r   <module>   s    
7921'-