o
    h                     @   s  d Z ddlm  mZ ddlZedZdd Z	dd Z
dd	 Zd
d Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdqd!d"Zdqd#d$Zd%d& Zd'd( Zd)d* Zd+d, Zd-d. Zd/d0 Zd1d2 Zd3d4 Z d5d6 Z!d7d8 Z"d9d: Z#d;d< Z$d=d> Z%d?d@ Z&dAdB Z'dCdD Z(dEdF Z)dGdH Z*dIdJ Z+dKdL Z,dMdN Z-dOdP Z.dQdR Z/dqdSdTZ0dqdUdVZ1dWdX Z2dYdZ Z3d[d\ Z4d]d^ Z5d_d` Z6dadb Z7dcdd Z8dedf Z9dgdh Z:didj Z;dkdl Z<dmdn Z=dodp Z>dS )rz0
Direct wrappers for Fortran `id_dist` backend.
    Nznonzero return codec                 C   s0   t | } | jjr| jdd} | S t | } | S )z6
    Same as np.asfortranarray, but ensure a copy
    Forder)npasarrayflagsf_contiguouscopyasfortranarray)A r   ^/var/www/html/scripts/venv/lib/python3.10/site-packages/scipy/linalg/_interpolative_backend.py_asfortranarray_copy(   s   

r   c                 C   
   t | S )a  
    Generate standard uniform pseudorandom numbers via a very efficient lagged
    Fibonacci method.

    :param n:
        Number of pseudorandom numbers to generate.
    :type n: int

    :return:
        Pseudorandom numbers.
    :rtype: :class:`numpy.ndarray`
    )_idid_srand)nr   r   r   r   8   s   
r   c                 C   s   t | } t|  dS )z
    Initialize seed values for :func:`id_srand` (any appropriately random
    numbers will do).

    :param t:
        Array of 55 seed values.
    :type t: :class:`numpy.ndarray`
    N)r   r
   r   	id_srandi)tr   r   r   r   H   s   
	r   c                   C   s   t   dS )z5
    Reset seed values to their original values.
    N)r   	id_srandor   r   r   r   r   U   s   r   c                 C      t | ||S )a|  
    Transform real vector via a composition of Rokhlin's random transform,
    random subselection, and an FFT.

    In contrast to :func:`idd_sfrm`, this routine works best when the length of
    the transformed vector is the power-of-two integer output by
    :func:`idd_frmi`, or when the length is not specified but instead
    determined a posteriori from the output. The returned transformed vector is
    randomly permuted.

    :param n:
        Greatest power-of-two integer satisfying `n <= x.size` as obtained from
        :func:`idd_frmi`; `n` is also the length of the output vector.
    :type n: int
    :param w:
        Initialization array constructed by :func:`idd_frmi`.
    :type w: :class:`numpy.ndarray`
    :param x:
        Vector to be transformed.
    :type x: :class:`numpy.ndarray`

    :return:
        Transformed vector.
    :rtype: :class:`numpy.ndarray`
    )r   idd_frmr   wxr   r   r   r   `      r   c                 C      t | |||S )a  
    Transform real vector via a composition of Rokhlin's random transform,
    random subselection, and an FFT.

    In contrast to :func:`idd_frm`, this routine works best when the length of
    the transformed vector is known a priori.

    :param l:
        Length of transformed vector, satisfying `l <= n`.
    :type l: int
    :param n:
        Greatest power-of-two integer satisfying `n <= x.size` as obtained from
        :func:`idd_sfrmi`.
    :type n: int
    :param w:
        Initialization array constructed by :func:`idd_sfrmi`.
    :type w: :class:`numpy.ndarray`
    :param x:
        Vector to be transformed.
    :type x: :class:`numpy.ndarray`

    :return:
        Transformed vector.
    :rtype: :class:`numpy.ndarray`
    )r   idd_sfrmlr   r   r   r   r   r   r   }      r   c                 C   r   )aC  
    Initialize data for :func:`idd_frm`.

    :param m:
        Length of vector to be transformed.
    :type m: int

    :return:
        Greatest power-of-two integer `n` satisfying `n <= m`.
    :rtype: int
    :return:
        Initialization array to be used by :func:`idd_frm`.
    :rtype: :class:`numpy.ndarray`
    )r   idd_frmimr   r   r   r!         
r!   c                 C      t | |S )a  
    Initialize data for :func:`idd_sfrm`.

    :param l:
        Length of output transformed vector.
    :type l: int
    :param m:
        Length of the vector to be transformed.
    :type m: int

    :return:
        Greatest power-of-two integer `n` satisfying `n <= m`.
    :rtype: int
    :return:
        Initialization array to be used by :func:`idd_sfrm`.
    :rtype: :class:`numpy.ndarray`
    )r   	idd_sfrmir   r#   r   r   r   r&         r&   c                 C   Z   t |}t| |\}}}|jd }|j d|||   j||| fdd}|||fS )a  
    Compute ID of a real matrix to a specified relative precision.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Rank of ID.
    :rtype: int
    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
       Nr   r   )r   r   iddp_idshapeTravelreshapeepsr   kidxrnormsr   projr   r   r   r+      
   
,
r+   c                 C   V   t | } t| |\}}| jd }| j d|||   j||| fdd}||fS )aQ  
    Compute ID of a real matrix to a specified rank.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    r*   Nr   r   )r   r   iddr_idr,   r-   r.   r/   r   r2   r3   r4   r   r5   r   r   r   r8      
   
,r8   c                 C   8   t | } |jdkrt| ||S | ddt |f S )as  
    Reconstruct matrix from real ID.

    :param B:
        Skeleton matrix.
    :type B: :class:`numpy.ndarray`
    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`
    :param proj:
        Interpolation coefficients.
    :type proj: :class:`numpy.ndarray`

    :return:
        Reconstructed matrix.
    :rtype: :class:`numpy.ndarray`
    r   N)r   r
   sizer   idd_reconidargsortBr3   r5   r   r   r   r=         

r=   c                 C   r%   )a6  
    Reconstruct interpolation matrix from real ID.

    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`
    :param proj:
        Interpolation coefficients.
    :type proj: :class:`numpy.ndarray`

    :return:
        Interpolation matrix.
    :rtype: :class:`numpy.ndarray`
    )r   idd_reconintr3   r5   r   r   r   rB        rB   c                 C      t | } t| ||S )aN  
    Reconstruct skeleton matrix from real ID.

    :param A:
        Original matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of ID.
    :type k: int
    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`

    :return:
        Skeleton matrix.
    :rtype: :class:`numpy.ndarray`
    )r   r
   r   idd_copycolsr   r2   r3   r   r   r   rF   %     
rF   c                 C   2   t | } t| ||\}}}}|rt|||fS )a  
    Convert real ID to SVD.

    :param B:
        Skeleton matrix.
    :type B: :class:`numpy.ndarray`
    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`
    :param proj:
        Interpolation coefficients.
    :type proj: :class:`numpy.ndarray`

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    )r   r
   r   
idd_id2svd_RETCODE_ERRORr@   r3   r5   UVSierr   r   r   rJ   ?  
   

rJ      c                 C      t | ||||\}}|S )a  
    Estimate spectral norm of a real matrix by the randomized power method.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matvect:
        Function to apply the matrix transpose to a vector, with call signature
        `y = matvect(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvect: function
    :param matvec:
        Function to apply the matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function
    :param its:
        Number of power method iterations.
    :type its: int

    :return:
        Spectral norm estimate.
    :rtype: float
    )r   	idd_snorm)r#   r   matvectmatvecitssnormvr   r   r   rT   b     rT   c              	   C      t | ||||||S )a0  
    Estimate spectral norm of the difference of two real matrices by the
    randomized power method.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matvect:
        Function to apply the transpose of the first matrix to a vector, with
        call signature `y = matvect(x)`, where `x` and `y` are the input and
        output vectors, respectively.
    :type matvect: function
    :param matvect2:
        Function to apply the transpose of the second matrix to a vector, with
        call signature `y = matvect2(x)`, where `x` and `y` are the input and
        output vectors, respectively.
    :type matvect2: function
    :param matvec:
        Function to apply the first matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function
    :param matvec2:
        Function to apply the second matrix to a vector, with call signature
        `y = matvec2(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec2: function
    :param its:
        Number of power method iterations.
    :type its: int

    :return:
        Spectral norm estimate of matrix difference.
    :rtype: float
    )r   idd_diffsnorm)r#   r   rU   matvect2rV   matvec2rW   r   r   r   r\        'r\   c                 C   0   t | } t| |\}}}}|rt|||fS )a  
    Compute SVD of a real matrix to a specified rank.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of SVD.
    :type k: int

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    )r   r
   r   iddr_svdrK   r   r2   rM   rN   rO   rP   r   r   r   ra     
   

ra   c                 C      t |}|j\}}t| |\}}}}}}	|	rt||d |||  d  j||fdd}
||d |||  d  j||fdd}||d || d  }|
||fS )a  
    Compute SVD of a real matrix to a specified relative precision.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    r*   r   r   )r   r
   r,   r   iddp_svdrK   r/   r1   r   r#   r   r2   iUiViSr   rP   rM   rN   rO   r   r   r   re        

**
re   c           	      C   s   t |}|j\}}t|\}}t j|d| d  | d dd}t| |||\}}}|d|||   j||| fdd}|||fS )a  
    Compute ID of a real matrix to a specified relative precision using random
    sampling.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Rank of ID.
    :rtype: int
    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
       r*   r   r   N)r   r
   r,   r!   emptyr   iddp_aidr/   	r1   r   r#   r   n2r   r5   r2   r3   r   r   r   rm     s   

"&
rm   c                 C   sZ   t |}|j\}}t|\}}t j|| |d |d   dd}t| |||\}}|S )ae  
    Estimate rank of a real matrix to a specified relative precision using
    random sampling.

    The output rank is typically about 8 higher than the actual rank.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Rank estimate.
    :rtype: int
    r*   r   r   )r   r
   r,   r!   rl   r   idd_estrankr1   r   r#   r   ro   r   rar2   r   r   r   rp     s   

"rp   c                 C   s  t |}|j\}}t|\}}t jtt||d d| d|  d  dt||d   d| d |d  dd}t| |||\}}}	}
}}|rMt	||d |||  d  j
||fdd}||	d |	||  d  j
||fdd}||
d |
| d  }|||fS )a  
    Compute SVD of a real matrix to a specified relative precision using random
    sampling.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    r*            rk   r   r   )r   r
   r,   r   r!   rl   maxmin	iddp_asvdrK   r/   r1   r   r#   r   ro   winitr   r2   rg   rh   ri   rP   rM   rN   rO   r   r   r   rx   -  s    

4**
rx   c                 C   s~   t j|d d| t||d   dd}t| ||||\}}}}|dkr't|d|||   j||| fdd}|||fS )a  
    Compute ID of a real matrix to a specified relative precision using random
    matrix-vector multiplication.

    :param eps:
        Relative precision.
    :type eps: float
    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matvect:
        Function to apply the matrix transpose to a vector, with call signature
        `y = matvect(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvect: function

    :return:
        Rank of ID.
    :rtype: int
    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    r*   rk   r   r   r   N)r   rl   rw   r   iddp_ridrK   r/   )r1   r#   r   rU   r5   r2   r3   rP   r   r   r   r{   W  s   (&
r{   c                 C   "   t | |||\}}}|rt|S )aQ  
    Estimate rank of a real matrix to a specified relative precision using
    random matrix-vector multiplication.

    :param eps:
        Relative precision.
    :type eps: float
    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matvect:
        Function to apply the matrix transpose to a vector, with call signature
        `y = matvect(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvect: function

    :return:
        Rank estimate.
    :rtype: int
    )r   idd_findrankrK   )r1   r#   r   rU   r2   rr   rP   r   r   r   r}   }     r}   c                 C      t | ||||\}}}}}	}
|
rt|	|d |||  d  j||fdd}|	|d |||  d  j||fdd}|	|d || d  }|||fS )a  
    Compute SVD of a real matrix to a specified relative precision using random
    matrix-vector multiplication.

    :param eps:
        Relative precision.
    :type eps: float
    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matvect:
        Function to apply the matrix transpose to a vector, with call signature
        `y = matvect(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvect: function
    :param matvec:
        Function to apply the matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    r*   r   r   )r   	iddp_rsvdrK   r/   )r1   r#   r   rU   rV   r2   rg   rh   ri   r   rP   rM   rN   rO   r   r   r   r        #**
r   c                 C   x   t | } | j\}}t|||}t| ||\}}||kr-t j||| fddd}||fS |j||| fdd}||fS )ag  
    Compute ID of a real matrix to a specified rank using random sampling.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    float64r   dtyper   r   )r   r
   r,   	iddr_aidir   iddr_aidrl   r/   r   r2   r#   r   r   r3   r5   r   r   r   r        

r   c                 C   r   )aO  
    Initialize array for :func:`iddr_aid`.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Initialization array to be used by :func:`iddr_aid`.
    :rtype: :class:`numpy.ndarray`
    )r   r   r#   r   r2   r   r   r   r        r   c           
      C   s   t | } | j\}}t jd| d | d| d |  d|d   d dd}t|||}||d	|j< t| ||\}}}}	|	d
krEt|||fS )a  
    Compute SVD of a real matrix to a specified rank using random sampling.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of SVD.
    :type k: int

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    rk            ru   d   r   r   Nr   )	r   r
   r,   rl   r   r<   r   	iddr_asvdrK   
r   r2   r#   r   r   w_rM   rN   rO   rP   r   r   r   r     s   

:
r   c                 C   B   t | |||\}}|d|||   j||| fdd}||fS )a  
    Compute ID of a real matrix to a specified rank using random matrix-vector
    multiplication.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matvect:
        Function to apply the matrix transpose to a vector, with call signature
        `y = matvect(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvect: function
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    Nr   r   )r   iddr_ridr/   )r#   r   rU   r2   r3   r5   r   r   r   r   )     &r   c           	      C   s0   t | ||||\}}}}|dkrt|||fS )a  
    Compute SVD of a real matrix to a specified rank using random matrix-vector
    multiplication.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matvect:
        Function to apply the matrix transpose to a vector, with call signature
        `y = matvect(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvect: function
    :param matvec:
        Function to apply the matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function
    :param k:
        Rank of SVD.
    :type k: int

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    r   )r   	iddr_rsvdrK   )	r#   r   rU   rV   r2   rM   rN   rO   rP   r   r   r   r   M  s   #
r   c                 C   r   )a  
    Transform complex vector via a composition of Rokhlin's random transform,
    random subselection, and an FFT.

    In contrast to :func:`idz_sfrm`, this routine works best when the length of
    the transformed vector is the power-of-two integer output by
    :func:`idz_frmi`, or when the length is not specified but instead
    determined a posteriori from the output. The returned transformed vector is
    randomly permuted.

    :param n:
        Greatest power-of-two integer satisfying `n <= x.size` as obtained from
        :func:`idz_frmi`; `n` is also the length of the output vector.
    :type n: int
    :param w:
        Initialization array constructed by :func:`idz_frmi`.
    :type w: :class:`numpy.ndarray`
    :param x:
        Vector to be transformed.
    :type x: :class:`numpy.ndarray`

    :return:
        Transformed vector.
    :rtype: :class:`numpy.ndarray`
    )r   idz_frmr   r   r   r   r   z  r   r   c                 C   r   )a  
    Transform complex vector via a composition of Rokhlin's random transform,
    random subselection, and an FFT.

    In contrast to :func:`idz_frm`, this routine works best when the length of
    the transformed vector is known a priori.

    :param l:
        Length of transformed vector, satisfying `l <= n`.
    :type l: int
    :param n:
        Greatest power-of-two integer satisfying `n <= x.size` as obtained from
        :func:`idz_sfrmi`.
    :type n: int
    :param w:
        Initialization array constructed by :func:`idd_sfrmi`.
    :type w: :class:`numpy.ndarray`
    :param x:
        Vector to be transformed.
    :type x: :class:`numpy.ndarray`

    :return:
        Transformed vector.
    :rtype: :class:`numpy.ndarray`
    )r   idz_sfrmr   r   r   r   r     r    r   c                 C   r   )aC  
    Initialize data for :func:`idz_frm`.

    :param m:
        Length of vector to be transformed.
    :type m: int

    :return:
        Greatest power-of-two integer `n` satisfying `n <= m`.
    :rtype: int
    :return:
        Initialization array to be used by :func:`idz_frm`.
    :rtype: :class:`numpy.ndarray`
    )r   idz_frmir"   r   r   r   r     r$   r   c                 C   r%   )a  
    Initialize data for :func:`idz_sfrm`.

    :param l:
        Length of output transformed vector.
    :type l: int
    :param m:
        Length of the vector to be transformed.
    :type m: int

    :return:
        Greatest power-of-two integer `n` satisfying `n <= m`.
    :rtype: int
    :return:
        Initialization array to be used by :func:`idz_sfrm`.
    :rtype: :class:`numpy.ndarray`
    )r   	idz_sfrmir'   r   r   r   r     r(   r   c                 C   r)   )a  
    Compute ID of a complex matrix to a specified relative precision.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Rank of ID.
    :rtype: int
    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    r*   Nr   r   )r   r   idzp_idr,   r-   r.   r/   r0   r   r   r   r     r6   r   c                 C   r7   )aT  
    Compute ID of a complex matrix to a specified rank.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    r*   Nr   r   )r   r   idzr_idr,   r-   r.   r/   r9   r   r   r   r     r:   r   c                 C   r;   )av  
    Reconstruct matrix from complex ID.

    :param B:
        Skeleton matrix.
    :type B: :class:`numpy.ndarray`
    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`
    :param proj:
        Interpolation coefficients.
    :type proj: :class:`numpy.ndarray`

    :return:
        Reconstructed matrix.
    :rtype: :class:`numpy.ndarray`
    r   N)r   r
   r<   r   idz_reconidr>   r?   r   r   r   r     rA   r   c                 C   r%   )a9  
    Reconstruct interpolation matrix from complex ID.

    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`
    :param proj:
        Interpolation coefficients.
    :type proj: :class:`numpy.ndarray`

    :return:
        Interpolation matrix.
    :rtype: :class:`numpy.ndarray`
    )r   idz_reconintrC   r   r   r   r   -  rD   r   c                 C   rE   )aQ  
    Reconstruct skeleton matrix from complex ID.

    :param A:
        Original matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of ID.
    :type k: int
    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`

    :return:
        Skeleton matrix.
    :rtype: :class:`numpy.ndarray`
    )r   r
   r   idz_copycolsrG   r   r   r   r   ?  rH   r   c                 C   rI   )a  
    Convert complex ID to SVD.

    :param B:
        Skeleton matrix.
    :type B: :class:`numpy.ndarray`
    :param idx:
        Column index array.
    :type idx: :class:`numpy.ndarray`
    :param proj:
        Interpolation coefficients.
    :type proj: :class:`numpy.ndarray`

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    )r   r
   r   
idz_id2svdrK   rL   r   r   r   r   Y  rQ   r   c                 C   rS   )a  
    Estimate spectral norm of a complex matrix by the randomized power method.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matveca:
        Function to apply the matrix adjoint to a vector, with call signature
        `y = matveca(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matveca: function
    :param matvec:
        Function to apply the matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function
    :param its:
        Number of power method iterations.
    :type its: int

    :return:
        Spectral norm estimate.
    :rtype: float
    )r   	idz_snorm)r#   r   matvecarV   rW   rX   rY   r   r   r   r   |  rZ   r   c              	   C   r[   )a/  
    Estimate spectral norm of the difference of two complex matrices by the
    randomized power method.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matveca:
        Function to apply the adjoint of the first matrix to a vector, with
        call signature `y = matveca(x)`, where `x` and `y` are the input and
        output vectors, respectively.
    :type matveca: function
    :param matveca2:
        Function to apply the adjoint of the second matrix to a vector, with
        call signature `y = matveca2(x)`, where `x` and `y` are the input and
        output vectors, respectively.
    :type matveca2: function
    :param matvec:
        Function to apply the first matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function
    :param matvec2:
        Function to apply the second matrix to a vector, with call signature
        `y = matvec2(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec2: function
    :param its:
        Number of power method iterations.
    :type its: int

    :return:
        Spectral norm estimate of matrix difference.
    :rtype: float
    )r   idz_diffsnorm)r#   r   r   matveca2rV   r^   rW   r   r   r   r     r_   r   c                 C   r`   )a  
    Compute SVD of a complex matrix to a specified rank.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of SVD.
    :type k: int

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    )r   r
   r   idzr_svdrK   rb   r   r   r   r     rc   r   c                 C   rd   )a  
    Compute SVD of a complex matrix to a specified relative precision.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    r*   r   r   )r   r
   r,   r   idzp_svdrK   r/   rf   r   r   r   r     rj   r   c           	      C   s   t |}|j\}}t|\}}t j|d| d  | d ddd}t| |||\}}}|d|||   j||| fdd}|||fS )a  
    Compute ID of a complex matrix to a specified relative precision using
    random sampling.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Rank of ID.
    :rtype: int
    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    rk   r*   
complex128r   r   Nr   )r   r
   r,   r   rl   r   idzp_aidr/   rn   r   r   r   r   
  s   

$&
r   c                 C   s\   t |}|j\}}t|\}}t j|| |d |d   ddd}t| |||\}}|S )ah  
    Estimate rank of a complex matrix to a specified relative precision using
    random sampling.

    The output rank is typically about 8 higher than the actual rank.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Rank estimate.
    :rtype: int
    r*   r   r   r   )r   r
   r,   r   rl   r   idz_estrankrq   r   r   r   r   )  s   

$r   c                 C   s  t |}|j\}}t|\}}t jtt||d d| d|  d  dt||d   d| d |d  t jdd}t	| |||\}}}	}
}}|rOt
||d |||  d  j||fdd	}||	d |	||  d  j||fdd	}||
d |
| d  }|||fS )
a  
    Compute SVD of a complex matrix to a specified relative precision using
    random sampling.

    :param eps:
        Relative precision.
    :type eps: float
    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    r*   rs   rt         rk   r   r   r   )r   r
   r,   r   r   rl   rv   rw   r   	idzp_asvdrK   r/   ry   r   r   r   r   G  s    

4**
r   c                 C   s~   t j|d d| t||d   t jdd}t| ||||\}}}}|r't|d|||   j||| fdd}|||fS )a  
    Compute ID of a complex matrix to a specified relative precision using
    random matrix-vector multiplication.

    :param eps:
        Relative precision.
    :type eps: float
    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matveca:
        Function to apply the matrix adjoint to a vector, with call signature
        `y = matveca(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matveca: function

    :return:
        Rank of ID.
    :rtype: int
    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    r*   rk   r   r   Nr   )r   rl   rw   r   r   idzp_ridrK   r/   )r1   r#   r   r   r5   r2   r3   rP   r   r   r   r   q  s   &
r   c                 C   r|   )aR  
    Estimate rank of a complex matrix to a specified relative precision using
    random matrix-vector multiplication.

    :param eps:
        Relative precision.
    :type eps: float
    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matveca:
        Function to apply the matrix adjoint to a vector, with call signature
        `y = matveca(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matveca: function

    :return:
        Rank estimate.
    :rtype: int
    )r   idz_findrankrK   )r1   r#   r   r   r2   rr   rP   r   r   r   r     r~   r   c                 C   r   )a  
    Compute SVD of a complex matrix to a specified relative precision using
    random matrix-vector multiplication.

    :param eps:
        Relative precision.
    :type eps: float
    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matveca:
        Function to apply the matrix adjoint to a vector, with call signature
        `y = matveca(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matveca: function
    :param matvec:
        Function to apply the matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    r*   r   r   )r   	idzp_rsvdrK   r/   )r1   r#   r   r   rV   r2   rg   rh   ri   r   rP   rM   rN   rO   r   r   r   r     r   r   c                 C   r   )aj  
    Compute ID of a complex matrix to a specified rank using random sampling.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    r   r   r   r   )r   r
   r,   	idzr_aidir   idzr_aidrl   r/   r   r   r   r   r     r   r   c                 C   r   )aO  
    Initialize array for :func:`idzr_aid`.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Initialization array to be used by :func:`idzr_aid`.
    :rtype: :class:`numpy.ndarray`
    )r   r   r   r   r   r   r     r   r   c           
      C   s   t | } | j\}}t jd| d | d| d |  d|d   d|  d dd	d
}t|||}||d|j< t| ||\}}}}	|	rHt|||fS )a  
    Compute SVD of a complex matrix to a specified rank using random sampling.

    :param A:
        Matrix.
    :type A: :class:`numpy.ndarray`
    :param k:
        Rank of SVD.
    :type k: int

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    rk      r   r   r   
   Z   r   r   r   N)	r   r
   r,   rl   r   r<   r   	idzr_asvdrK   r   r   r   r   r   !  s   

6
r   c                 C   r   )a  
    Compute ID of a complex matrix to a specified rank using random
    matrix-vector multiplication.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matveca:
        Function to apply the matrix adjoint to a vector, with call signature
        `y = matveca(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matveca: function
    :param k:
        Rank of ID.
    :type k: int

    :return:
        Column index array.
    :rtype: :class:`numpy.ndarray`
    :return:
        Interpolation coefficients.
    :rtype: :class:`numpy.ndarray`
    Nr   r   )r   idzr_ridr/   )r#   r   r   r2   r3   r5   r   r   r   r   G  r   r   c           	      C   s,   t | ||||\}}}}|rt|||fS )a  
    Compute SVD of a complex matrix to a specified rank using random
    matrix-vector multiplication.

    :param m:
        Matrix row dimension.
    :type m: int
    :param n:
        Matrix column dimension.
    :type n: int
    :param matveca:
        Function to apply the matrix adjoint to a vector, with call signature
        `y = matveca(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matveca: function
    :param matvec:
        Function to apply the matrix to a vector, with call signature
        `y = matvec(x)`, where `x` and `y` are the input and output vectors,
        respectively.
    :type matvec: function
    :param k:
        Rank of SVD.
    :type k: int

    :return:
        Left singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Right singular vectors.
    :rtype: :class:`numpy.ndarray`
    :return:
        Singular values.
    :rtype: :class:`numpy.ndarray`
    )r   	idzr_rsvdrK   )	r#   r   r   rV   r2   rM   rN   rO   rP   r   r   r   r   k  s   #
r   )rR   )?__doc__scipy.linalg._interpolativelinalg_interpolativer   numpyr   RuntimeErrorrK   r   r   r   r   r   r   r!   r&   r+   r8   r=   rB   rF   rJ   rT   r\   ra   re   rm   rp   rx   r{   r}   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   <module>   st   
#
 .$*&"0$$-
#
 .$*("0&$